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In the last 15 years, our understanding of carbene chemistry has

advanced dramaticallyln particular, starting from the pioneering
push-pull phosphinosilylcarbenes?2 and pusk-push N-hetero-
cyclic carbene8? (Figure 1), the availability of a variety of stable
singlet carbenés has allowed for spectacular achievements both
in organi® and organometallfocchemistry. More insights have also
been gained for typical carbene reactivity (such as dimerization,
cyclopropanatiofi,1,2-? and 1,3 migration reactions) that could
thus far only be investigated for the transient species.

In this perspective, we report here the preparation and charac-

terization of persistent aminohydrazinocarbei®@s$ as well as

evidence for their spontaneous radical fragmentation. Notably, the
fragmentation of carbenes has been much less investigated than

their isomerization or dimerizatio¥-1* Moss made significant
contributions in the heterolytic cleavage of transient alkoxyhalo-
carbened? and Warkentin recently demonstrated that the apparent
1,2- and 2,3-sigmatropic rearrangements of allyloxymethoxycar-
benes occur via homolytig-scission of the transient carbenes
(Scheme 1¥30-f

We first investigated carbera, replacing one of the tiopro-
pylamino substituent ofi{PrN—C—N(i-Pr}!5 by an hydrazino
group of similar steric hindrance. The required formamidinium
precursorla was prepared in good vyield by condensing the
appropriate silylhydrazine and chloroformamidinium chloride (Scheme
2). Deprotonation ofaby lithium hexamethyldisilazane (LIHMDS)
at —78 °C in deuterated THF cleanly afforded the corresponding
carbenea, as unambiguously deduced fréB& NMR spectroscopy
(0 228 ppm)te

Although (-PrpN—C—N(i-Pr), is indefinitely stable at room
temperature, carberiza rapidly fragments at-22 °C, following
first-order kinetics t4, ~ 20 min), affording trisopropylform-
amidine3 along with methylenemethylaming!”

To gain more insight into thig-fragmentation reactiotf DFT
calculations were carried out on the model carb@ieat the
B3LYP/6-31G** level of theory:? In agreement with the experi-

Figure 1. Schematic representation of carberesC.
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salt 1b afforded the corresponding carbe@b that could be
observed without degradation up tel0 °C.16 The half-life time

of 2b (t;, ~ 2.5 h at—5 °C) is significantly larger than that &a,

and carben&b affords, upon warm up, not only formamidirge

but also hexaopropyloxamidines in a 6:4 ratio (Scheme 3). The
structure ofs was established spectroscopically and unambiguously

mental observations, the rearrangement was predicted to be highlyconfirmed by an X-ray diffraction study. The formation of

exothermic {33.6 kcal mot?), and a cyclic transition stafESyaq
could be located on the closed-shell surface 26.0 kcal hingher
in energy than the reactive conformer 25f (Figure 2).

Accordingly, at first glance, the fragmentation reaction could
be predicted to be concerted and asynchronous, thid Bind C-H
bonds being elongated in the transition state by 40 and 20%,
respectively, compared to those of the carb2he

Interestingly, the stability and rearrangement pathway of ami-

oxamidine5 most likely results from the NN homolytic frag-
mentation ob followed byo-(C—C) dimerization of the resulting
aminoimidoyl radicals i¢Pr)N=C—N(i-Pr), 6.20.21 Such a radical
rearrangement is not surprising in view of the weakness of NN
single bonds (i.e., 40 kcal mdi for hydrazines).

To confirm the feasibility of such a radical pathway for the
fragmentation o2*, the resulting aminyl and aminoimidoyl radicals
were optimized at the UB3LYP/6-31G** level, and the-Nl bond

nohydrazinocarbenes were found to be dependent on the substitutiof@nergy for carben@* (AE) was thereby estimated at 27.8 kcal

pattern of the [yatom. Indeed, deprotonation of the formamidinium
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mol~! (eq 1)? Because of favorable entropic factors, the corre-
spondingAG value for this dissociative radical process is only 14.4
kcal molt at 25°C, which is lower than the value predicted for
the formation of3* via a concerted procesaG* = 26.0 kcal mot?

10.1021/ja050028g CCC: $30.25 © 2005 American Chemical Society
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Figure 2. Closed-shell surface of the model aminohydrazinocart®ne
computed at the B3LYP/6-31G** level (total energiBsrelative to the
carbene* including ZPE correction and expressed in kilocalories per mole,
distances given in angstroms).
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i-Pr—N i-Pr

14

Ji-Pr _ JPr 3 N
< :N_N>\E pr LIHMDS ([ :N_N\_ P o Ho, Pr

N -78°C N sC .
H o iPr 2b Yipr iFI'rPr N

1b o -

BPh, N ‘ipr

P’ N—iPr

at 25 °C). Accordingly, the concomitant formation & and 5,
observed experimentally, can result either from competitive closed-
shell/radical fragmentation o2b or more likely from radical
fragmentation of2b followed by competitive H-abstraction/
o-dimerization of the ensuing aminoimidoyl radicl

" - -1
Me,N—NH AE = 27.8 kcal.mol HN NH
C—NH,  Mea+ TS (1)
. AG = 14.4 kcal.mol
2* 6*

In conclusion, acyclic aminohydrazinocarbenes have been pre-
pared and spectroscopically characterized in solution at low
temperature. Thej$-fragmentation upon warm up affords the first
evidence for a homolytic fragmentation for a persistent singlet
carbene3=25 The possible involvement of such radical pathways
in other carbene reactions is currently under investigation.
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